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Excitation of instability waves in a two-dimensional 
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The excitation of instability waves in a plane compressible shear layer by sound 
waves is studied. The problem is formulated mathematicdly as an inhomogeneous 
boundary-value problem. A general solution for arbitrary incident sound wave is 
found by fk-st constructing the Green's function of the problem. Numerical values of 
the coupling constants between incident sound waves and excited instability waves 
for a range of flow Mach numbers are calculated. The effect of the angle of incidence 
in the case of a beam of acoustic waves is analysed. It is found that for moderate sub- 
sonic Mach numbers a narrow beam aiming a t  an angle between 50 to 80" to the flow 
direction is most effective in exciting instability waves. 

1. Introduction 
This paper considers the excitation of instability waves of a two-dimensional 

compressible shear layer by incident sound waves. The flow configuration is illustrated 
in figure 1.  In  the past, sound waves of discrete frequencies have been used by many 
experimenters to excite flow instabilities in transition studies. Miksad (1973) employed 
an experimental set-up almost identical to that of figure 1 in his investigation of non- 
linear instability waves in plane shear layer. Freymuth (1966) used sound waves of 
discrete frequency to induce unstable waves in the mixing layer of a jet in his study 
of inviscid linear instability wave charact6ristics. Sato (1970) used sound to trigger 
unstable waves in two-dimensional wakes in his wake transition experiments. In  
addition to these intentional uses of sound as an exciter in laboratory flow transition 
experiments, knowledge of how incident sound waves induce flow instabilities has 
obvious practical applications in wind tunnel measurements and laminar flow control 
in long range aircraft technology. 

In  a recent review article on boundary-layer stability and transition, Reshotko 
(1976) briefly discussed the problem of the response of a boundary layer to a moving 
sound wave. It was pointed out that receptivity phenomena of this kind differed from 
the usual stability problem both physically and mathematically. The mathematical 
problem involved can no longer be formulated as a normal mode or an eigenvalue 
problem. Although some initial work has been done by Mack (1975) yet a satisfactory 
mathematical formulation of the problem does not seem to be available. Mack's work 
was motivated by the experimental observations of Kendall (1975) on the growth of 
supersonic boundary-layer instability waves. In  this work he only treated the response 
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FIGURE 1. Flow configuration under consideration. 

of a stable boundary layer to incident sound. A neutral stable solution of the Orr- 
Sommerfeld equation in the boundary layer was used to match an incoming acoustic 
wave solution with a prescribed amplitude and a reflected wave solution at the outer 
edge of the layer. In this way the forced disturbance amplitude was determined. Mack 
used this solution up to the point where the laminar boundary layer became unstable. 
Downstream of the neutral stable point he assumed that the boundary-layer disturb- 
ance was given by the usual instability wave solution. Acoustic forcing of unstable 
waves waa ignored. 

The objective of this paper is to study the effects of incident sound waves on an 
unstable shear layer. In  other words, we are dealing with the forced excitation of 
unstable waves. In $ 2, this problem is formulated mathematically as an inhomogeneous 
boundary-value problem. A general solution is constructed by using an appropriate 
Green's function. The advantage of this approach is that arbitrary spatial distribution 
of the incident sound wave amplitude is automatically taken care of. For a plane 
shear layer at  moderately high Reynolds number, it has been shown by Michalke 
(1965) and Freymuth (1966) that viscosity is not important as far as the instability 
characteristics of t,he layer is concerned. Accordingly, we shall use an inviscid model 
in our analysis. Solution of the problem is provided in Q 3. It turns out that the coupling 
constants between the incident sound wave and the excited instability wave for a 
given mean flow profile depend on the frequency and the flow Mach number alone. 
These constants can, therefore, be computed once and for all. For a beam of incident 
sound waves the angle of incidence is an important parameter. The effect of incident 
angle is studied in $ 4  in relation to acoustic beams with Gaussian amplitude distri- 
butions. It is found that for moderate subsonic Mach numbers an acoustic beam 
inclined at an angle between 50 and 80" to the flow direction is most effective in 
exciting the instability waves. In  addition, the calculation indicates that the beam 
width is also an important factor in determining the amplitude of the excited inst- 
ability wave. To induce flow instabilities a narrow beam is preferred. 
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FIGURE 2. Schematic diagram showing incident, reflected and transmitted 
waves together with co-ordinate system used. 

2. Formulation 
Consider a beam of sound waves of frequency Q incident on a two-dimensional 

shear layer as shown in figure 2. Part of the sound waves would be reflected by the 
shear layer and part of it would be transmitted. If the frequency of oscillation Q lies 
in the unstable frequency range of the mixing layer then instability waves would also 
be excited. To facilitate the formulation of this problem mathematically, we shall 
assume that the mean flow is parallel at least locally and the fluid is compressible and 
inviscid. The parallel flow approximation is not new. It is used in most hydrodynamic 
stability calculations. The inviscid assumption is reasonable for moderately large 
Reynolds number flow. Experimentally, it  has been found by Michalke (1965) and 
Freymuth (1966) to be valid for stability consideration. Recent experiments by Chan 
(19'7412, b )  and Moore (1977) seem to indicate that this is true even if the shear layer 
is turbulent. 

Above the shear layer, is. for y >, 0 (see figure 2), there is no mean flow or practically 
no mean flow. In  this region small amplitude disturbances are given by solutions of 
the simple wave equation. Ifp, and vi denote respectively the pressure and the velocity 
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component in the y direction associated with the incident acoustic wave, and p,  and 
v,. those associated with the reflected wave then we have 

and 

Equation (2) is the linearized y momentum equation. a, is the speed of sound in the 
ambient fluid. po is the density. We shall consider incident sound waves with time 
dependence'of the form exp ( -  iQt). By applying the Fourier transform to (1) and 
(2) we show that pi  and vi are given by 

Pi(X, Y, t )  -= @Ax, y) exp ( - iQt) 

v&, y, t )  = Oi(x, y) exp ( - iQ t )  

The branch of the square root to be used is 

Im ((Q/ao)2- k2)* > 0, 

Re (( Q/a,)2 - k2)* > 0, 

k2 > (Q/a,)2. 
( 5 )  

In  (3) and (4)) the amplitude and direction of propagation of the incident acoustic 
wave is determined by the function g(k). 

For y < 0, i.e. inside and below the shear layer, disturbances must satisfy the 
linearized momentum and energy equations. Let ii, p, p = po  (a constant) and y 
denote the mean flow velocity (in the x direction), density, pressure and ratio of 
specific heats respectively, then these equations are 

.-(; -aU aP 

$+s&?) = -- aP 

-+u-+v-- =--  
ax ay ax' 

aY ) 

aP -+u-+?PO(- -+- )  -8P au av = 0, 
at ax ax ay 

(7) 

where (u, v) and p are the disturbance velocity and pressure. By eliminating zc and v 
a single equation in terms of p can be formed : 

The boundary conditions of the present problem are: 

As y -+ co, p ,  satisfies the radiation and boundedness condition. (10) 
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Oi(x, 0 )  exp ( - iQt) + vr(x, 0, t )  = v(x, 0,  t ) .  

36 1 

(12) 

As y -+ - 00, p satisfies the radiation and boundedness condition. (13) 

Equations (1)-( 13) form an inhomogeneous boundary-value problem. Here f3&, 0)  
and O,(x, 0) in (1 1)  and (12) are arbitrary given input functions. For completely general 
incident sound waves it is found that the problem can best be solved by first developing 
an appropriate Green’s function. The Green’s function satisfies the same problem as 
above except that the inhomogeneous terms of boundary conditions (1 1) and (12) 
are replaced by delta functions as follows : 

cz6(x-$)exp( - iQt )+pT(x ,O, t )  = p(z,O,t), 

PS(x - 5) exp ( - iQt) + v,(x, 0, t )  = v(x, 0, t ) .  

Let pa(E; x ,  y ,  t )  be the solution of p with /3 = 0 and a = 1 and ~ ~ ( 5 ;  x ,  y, t )  be the solu- 
tion of p with /3 = 1 and a = 0. It is easy to verify that the solution of the general 
problem satisfying boundary conditions ( 1  1)  and (12) is 

P(G Y, t )  = Im fM5, 0)pa(E; G Y ,  t )  dE + J w  Oii(5,o)P’B(5; 2, Y ,  t )  d5. (16) 
--m --m 

The unstable wave solution is included in (16). The task of determining the excited 
instability wave, therefore, reduces to that of constructing p a ( [ ;  x, y ,  t )  and p&; x ,  y ,  t) .  
This is carried out in the next section. 

3. Excited instability wave solution 

These functions are related by 
We shall denote the Fourier-Laplace transform of a function f(z, t )  by f(k, 0). 

f(k, w )  = &/Iw I o m f ( x ,  t )  exp ( - i kx  + iwt) dtdx, 

f ( x ,  t )  = f ( k ,  w )  exp (ikx - iw t )  dkdw, 
r - w  

where I? is a contour parallel to the real axis in the w plane above all singularities. 
On applying the Fourier-Laplace transform to (1) and (2) we find fi? and 5, are solu- 
tions of the following equations : 

A solution o f  these equations which satisfies the radiation condition is 

f i r  = A exp [ - (k2 - wz/a$ y] ,  (184  

i (k2-  02/u;)B or = A exp [ - (k2 - d / a $  y]  . 
Po ” 
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FIGURE 3. Inversion contours in the o plane and k plane. 
- --f -, initial position of contour I?. 

The branch of the square root to be used is 

Re (k2 - w2/ai)* > 0, 

if Re (k2- wZ/ai)* = 0, use Im (k2 - wa/ai)*  < 0. (19) 

The Fourier-Laplace transforms of (9) and (7) are 

(21)  d@ i j ( w - Z k ) i ?  = -. 
dY 

Below the shear layer the flow is uniform. Thus as y + - 00, (20) becomes 

where U and a are the velocity and sound speed of the uniform flow. A solution of 
(22) which satisfies the radiation and boundedness condition (13) is 

where 

@ = Bexp [ ( k 2 - ( o - a y k ) 2 ) * y ] ,  

if Re [k' - (w -ayk)2]t = 0 use the branch Im 
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We shall denote the solutions of (20) and (21), which tends to (23) for large negative 
values of y ,  by 

f - j  = B#(Y, k,  w ) ,  ( 2 4 4  

I - iB d+ 
V =  

p ( w  -;izk)dy 

The unknown constants A and B of (18) and (24) are to be found by the inhomogeneous 
boundary conditions (14) and (15) at  y = 0. The Fourier-Laplace transforms of these 
boundary conditions at y = 0 are 

ia exp ( - ikf;) 
4nyw - a)  + A  = $7 

iB exp ( - ik f ; )  
4nyw - 0) +v", = c. 

By substituting @,, v",, 1; and v" from (18) and (24) into (25) and (26) it  is easy to find 

where 

On inverting the Fourier-Laplace transform as in (17) we obtain 

The integrals of (29) and (30) contain the complete response of the shear layer to the 
incident acoustic wave. Here we are only interested in the part of this response func- 
tion which is related to the unstable wave solution. To evaluate these integrals we 
follow the procedure of Briggs (1964, chapter 2). This procedure has been used by the 
present author, Tam (1971), in connexion with the acoustic radiation from a super- 
sonic jet due to instability of its thin shear layer. The instability wave arises from 
certain zeros of A(k,  w )  in the complex k plane. On following Briggs' procedure, the 
contour I? is first put in the upper half w plane with Im (w)  + a. This step is equivalent 
to invoking the causality condition. Since w is a value of I?, one can solve for the roots, 
k(w),  of A(k,  w, + ioo) = 0 and determine the position of the poles of the integrand 
relative to the inversion contour in the k plane. Now deform contour I? towards the 
real axis of the w plane as shown in figure 3. As a result of this the roots k(w) move 
about in the k plane. It was shown in our earlier work, Tam (1971), that the unstable 
pole k+(w) crosses the real k axis during this process of contour deformation. The 
same phenomenon happens here as is depicted in figure 3. The instability wave solu- 
tion is given by the residue contributions of the pole w = Q in the w plane and the 
pole k = k+(Q) in the k plane where A(k+(Q),  Q) = 0 .  Ignoring other contributions 
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to the integrals and keeping only the excited instability wave solution we find, from 
(29) and (30), p ,  and p! as given below: 

C.  K .  W .  Tarn 

is the unit step function. 0, x < E  
1, x > 5 ‘  

H ( z  - 5) = 

By means of (16), (31) and (32), the excited instability wave solution is found. It may 
be written as 

p(x3  Y, t )  = [GI’ - W  N C ,  0) exp (- ik+ 5) ~ c + F / ~  --oo UE, 0) exp ( - ik, 5) d ~ ]  

x $(y, k,, Q) exp ( i k + z  -iQt). (33) 
The coupling constants G and P are given by 

In order to understand the physical meaning of (33), Iet us differentiate it with respect 
to x. The following equation for the spatial rate of increase of I, is obtained : 

2 = ik+p + [ G $ ~ ( X ,  0) + P ~ ~ ( X ,  o)] +(y, k,, Q) exp ( - i ~ t ) .  (35) ax 

The first term on the right-hand side of ( 3 5 )  is, of course, the usual local growth term 
of the instability wave. It is there even in the absence of external excitation. The 
second term is linearly proportional to the amplitude of the incident acoustic wave. 
Clearly it represents a forcing term. It is this term which is responsible for the forced 
excitation of unstable waves of the shear layer by sound. 

The coupling constants G and P of (33) do not depend on the characteristics of the 
incident sound wave. They are functions of the properties of the shear layer and thus 
can be computed once and for all. According to the experimental measurements of 
Freymuth (1966), the mean velocity distribution of a two-dimensional mixing layer 
can be represented adequately by a hyperbolic tangent profile. With respect to the 
co-ordinate system shown in figure 2 we shall assume that the mean flow is given by 

- - U = 0*5[l--tanh(:+3)]. 
U 

In  (36) d is a measure of the shear-layer thickness. Also the outer edge of the shear 
layer has been taken to be at a distance 38 from the point of maximum shear. The 
effect of density gradient on the stability characteristics of the flow is known to be 
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FIGURE 4. Instability characteristics of compressible plane shear layer. 

-, M = 0.0; X - X ,  M = 0.4; ----, M = 0.6. 
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small for subsonic Mach numbers. Here we shall adopt the approximation that the 
total temperatures of the stationary as well as the moving fluids are the same. This 
leads to 

where M = U / a  is the free-stream Mach number. On using T i  and ,5 as given by (36) 
and (37), the eigenfunction q5 and eigenvalue k, can easily be obtained by integrating 
(20) numerically. Here the eigenfunction is normalized according to (23). In dimen- 
sionless form the real and imaginary parts of i& S as functions of T j  = IR S/ U are shown 
in figure 4 for various Mach numbers. To find the coupling constants F and G the 
quantity (aA/ak) ,  as required by (34) is computed by numerical differentiation. In 
figures 5 and 6 the real and imaginary parts of these constants are given in dimension- 
less form for M = 0.05, 0.2, 0.4 and 0.6 over the entire unstable frequency range. To 
use these values the eigenfunction q5 must be non-dimensionalized by po U2. As can 
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FIGURE 6. Real and imaginary parts of poUaW as a function of 0 = !M/U.  
I_ , M = 0.06; --, M = 0.2; X - X ,  M = 0.4; ---, M = 0.6. 

be seen from these figures the numerical values of U SF and p, U2SC are generally of 
the same order of magnitude, This implies that the excitation due to pressure fluc- 
tuations and velocity fluctuations of the incident sound wave are more or less of 
equal importance. 

4. The effect of angle of incidence 
Consider a narrow beam of sound waves incident on a two-dimensional shear layer. 

The effectiveness of the aound waves in exciting the instability waves of the shear layer 
obviously depends on the angle of incidence. We shall not attempt to study the effect 
of angle of incidence in the most general case. Instead we shall restrict our attention to 
the case in which the beam of sound waves has a spatial amplitude distribution more 
or less in the form of a Gaussian function. Let us take g(k) in (3) and (4) to be of the 
form 

g( k )  = EV ~ X P  ( - t r z ( k  - k,)S). 

This amplitude function represents a beam of sound with horizontal wavenumber 
concentrated around k = k,. The angle of incidence 6 (see figure 7) measured from the 
x axis is related to k, by n 

JL k, = - cos 6. 
a0 

(39) 
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FIGURE 7. Scheinatic diagram of a beam of acoustic waves incident on a plane shear layer. 

Substituting (38) into (3) we find that at the outer edge of the shear layer (y = 0 )  
the pressure pi is 

The half-width of this pressure distribution L' is approximately equal to 1.66a. From 
figure 7 it is seen that L' sin 8 w L. Therefore, we have (L  = half-width of the beam) 

pi(x, 0, t )  = 2 d E  exp ( - x2/rr2 + ikox - iQt). (40) 

L 
1.66sin8' 

1.66rrsinO=L or r r =  

Now downstream of the region of acoustic excitation the pressure associated with 
the instability wave is given approximately by (33) with the upper limit of the integral 
set equal to infinity: 

x exp ( ik+x  - iQt) 

1 F 
= 2n$(y, k+, Q) exp ( ik+x  - iQt) (Q2//ai - k2+)& g(k+). 

On using the expression for g(k) given by (38) the last factor of the above expression 
can be put into a dimensionless form as follows : 

where i3 = Q S / U .  For a beam of acoustic waves with a fixed maximum amplitude 
and a fixed half-width L, the angular dependence of the above expression comes only 
from the dependence of rr and k, on 8, namely, on the multiplication factor 

rrexp[-&rr2(k+-ko)2]. 
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FIGURE 8. The directional sensitivity function D(8).  5 = nS/U = 0-21. 
- , M = 0 * 2 ; - - , M = 0 . 4 ;  x - ~ , M = 0 * 6 .  

This is proportional to, 

The absolute value of this quantity, which we shall call the directional sensitivity func- 
tion D(e), is given by 

(45) 
Re (k, S - MG cos 0)2 

P L M  89 

sin2 0 
q e )  = 2 [ exp ( 

sm e 
I3  
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D(0) is a measure of the relative sensitivity of the shear layer to sound induced inst- 
ability as a function of the angle of incidence. In  figure 8 the numerical values of D(0) 
for G = 0.21 are shown. This value of 0 is practically the dimensionless frequency of 
the most unstable wave in the Mach number range of 0.0-0.6. Beams of three different 
sizes, namely L/S = 10,20 and 30, are chosen. It is clear from this figure that a narrow 
beam is most effective in exciting instability waves. A broad beam with large L/S is 
unlikely to have much effect in perturbing the shear layer. For the Mach number 
range considered, beams aimed at an angle of incidence between 50 and 80" will tend 
to generate instability waves with the largest amplitude. However, this angular 
dependence is more important for broad beams. The effectiveness of narrow beams is 
less sensitive to the angle of incidence. For a given beam the angle of incidence which 
is most effective in disturbing the shear layer decreases as the Mach number increases. 
Finally, we conclude from figure 8 that shear layers at  higher Mach numbers are more 
sensitive to acoustic excitation. 

To understand the above results physically it is important to recognize that for a 
given frequency effective coupling between the incident sound wave and the shear 
layer instability wave can be developed only if their wavenumbers are the same (or 
equivalently the phase velocities are the same). (Note: Here the matching of complex 
wavenumbers is involved. However, if the instability wave is only weakly unstable 
the interpretation of wavenumber to mean the real part of the wavenumber is essen- 
tially correct.) This is because unless the condition is satisfied the two-wave systems 
cannot be in phase with each other a t  all times. If they are out of phase any possible 
coupling would be cancelled out over the course of a period. In subsonic flows, however, 
the wavenumber of the shear layer instability wave is generally much larger than 
that of the incident acoustic wave. Thus these waves usually do not interact with each 
other unless the amplitude of the incident sound wave varies spatially. As a result of 
amplitude variation, the wavenumber spectrum of the incident sound wave need no 
longer be narrow and in fact could be very broad. When this happens there will be 
some wave components of the incident sound wave with a wavenumber which matches 
precisely that of the instability wave. These special wave components are responsible 
for the excitation of the unstable waves of the shear layer. Now if the incident sound 
wave is in the form of a narrow beam, its wavenumber spectrum would be very broad 
and overlap the wavenumber of the unstable wave of the shear layer. In  this case 
strong excitation of the instability wave is to be expected. On the other hand if the 
beam of incident sound wave is very broad, its wavenumber spectrum would then be 
very narrow (a property of the Fourier transform) and centred around the wave- 
number of the acoustic wave. Under these circumstances, the wavenumber matching 
condition may not be satisfied, resulting in negligibly small excited instability wave 
amplitude as shown in figure 8. 

5.  Summary 
In  this paper the receptivity problem of a plane shear layer to incident sound waves 

has been formulated mathematically. The excited instability wave solution is given. 
Numerical results indicate that excitations due to pressure fluctuations as well as 
velocity fluctuations associated with the incident sound waves are of more or less 
equal importance. To excite the instability wave of a shear layer, a narrow acoustic 
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beam is most effective. For moderate subsonic Mach number the shear layer is most 
sensitive to acoustic beams aimed a t  an angle between 50 and 80" to the direction of 
flow. 

This work was supported by NASA Langley Research Center under Grant NSG- 
1329. 
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